Advertisement

A comprehensive GlobalFiler™ autosomal STR reference dataset for Southern Africa

Published:October 28, 2022DOI:https://doi.org/10.1016/j.fsigss.2022.10.046

      Abstract

      In this study a total of n = 832 autosomal DNA profiles from Southern Africa are analysed using the GlobalFiler™ STR panel. The dataset includes South Africa (SA) profiles (n = 541) produced by Ristow et al. 2016 and includes newly generated data for SA Sepedi (n = 96) and Lesotho populations (n = 195). For the newly generated (n = 291) genotypes, we report a large degree of rare and novel variation. This included (n = 7) off-ladder allele variants and (n = 7) TPOX tri-alleles. We report forensic summary statistics and genetic diversity parameters. Expected heterozygosity and observed heterozygosity ranged between (0.7– 0.9) with SE33 as the most polymorphic and TH01 the least. For SA and Lesotho genotypes the combined match probability was (1.13 ×10-24 and 6.035 ×10-24) and the combined paternity index (1.4 ×109 and 2.44 ×108) respectively. The power of exclusion (0.9999) was similar for each dataset and no significant departures from Hardy-Weinberg equilibrium (HWE) were observed after Bonferroni correction. Population comparisons were performed by MDS and neighbour-joining and population structure inferred by STRUCTURE and DAPC unsupervised clustering.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Forensic Science International: Genetics Supplement Series
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ristow P.G.
        • Cloete K.W.
        • D’Amato M.E.
        GlobalFiler® express DNA amplification kit in South Africa: extracting the past from the present.
        Forensic Sci. Int. Genet. 2016; 24https://doi.org/10.1016/j.fsigen.2016.07.007
        • D’Amato M.E
        • Bonder M.
        • Butler J.M.
        • Gusmão L.
        • Linacre A.
        • Parson W.
        • Schneider P.M.
        • Vallone P.
        • Carracedo A.
        Ethical publication of research on genetics and genomics of biological material: guidelines and recommendations.
        Forensic Science International Genetics. 2020; 48https://doi.org/10.1016/j.fsigen.2020.102299
        • Burrows A.M.
        • Ristow P.G.
        • D’Amato M.E.
        Preservation of DNA from saliva samples in suboptimal conditions.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; 6: e80-e81https://doi.org/10.1016/j.fsigss.2017.09.050
        • Burrows A.M.
        • Kasu M.
        • D’Amato M.E.
        Preservation of DNA integrity in biological material.
        Forensic Sci. Int. Genet. Suppl. Ser. 2019; 7: 416-418https://doi.org/10.1016/j.fsigss.2019.10.034
        • Miller S.A.
        • Dykes D.D.
        • Polesky H.F.
        A simple salting out procedure for extracting DNA from human nucleated cells.
        Nucleic Acids Res. 1988; 16: 1215
        • Ristow P.G.
        • D’Amato M.E.
        Forensic statistics analysis toolbox (FORSTAT): a streamlined workflow for forensic statistics.
        Forensic Sci. Int. Genet. Suppl. Ser. 2017; https://doi.org/10.1016/j.fsigss.2017.09.006
        • Excoffier L.
        • Lischer H.E.L.
        Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.
        Mol. Ecol. Resour. 2010; 10: 564-567https://doi.org/10.1111/j.1755-0998.2010.02847.x
        • Takezaki N.
        • Nei M.
        • Tamura K.
        POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with windows interface.
        Mol. Biol. Evol. 2010; 27: 747-752https://doi.org/10.1093/molbev/msp312
        • Pritchard J.K.
        • Stephens M.
        • Donnelly P.
        Inference of population structure using multilocus genotype data.
        Genetics. 2000; 155: 945-959https://doi.org/10.1093/genetics/155.2.945
        • Evanno G.
        • Regnaut S.
        • Goudet J.
        Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.
        Mol. Ecol. 2005; 14: 2611-2620
        • Kopelman N.M.
        • Mayzel J.
        • Jakobsson M.
        • Rosenberg N.A.
        • Mayrose I.
        Clumpak: a program for identifying clustering modes and packaging population structure inferences across K.
        Mol. Ecol. Resour. 2015; 15: 1179-1191https://doi.org/10.1111/1755-0998.12387
        • Jombart T.
        • Devillard S.
        • Balloux F.
        Discriminant analysis of principal components: a new method for the analysis of genetically structured populations.
        BMC Genet. 2010; 11: 94https://doi.org/10.1186/1471-2156-11-94
        • Jombart T.
        adegenet: a R package for the multivariate analysis of genetic markers.
        Bioinformatics. 2008; 24: 1403-1405https://doi.org/10.1093/bioinformatics/btn129
        • P. RStudio Team
        RStudio: Integrated Development for R.
        RStudio, 2020
      1. A.C. Semo, Estudo genético-populacional dos principais grupos de Moçambique-aplicação forense, (2013).

        • Lane A.B.
        The nature of tri-allelic TPOX genotypes in African populations.
        Forensic Sci. Int. Genet. 2008; 2: 134-137
        • Picanço J.B.
        • Raimann P.E.
        • da Motta C.H.A.S.
        • Rodenbusch R.
        • Gusmão L.
        • Alho C.S.
        Identification of the third/extra allele for forensic application in cases with TPOX tri-allelic pattern.
        Forensic Sci. Int. Genet. 2015; 16: 88-93
        • Lane A.B.
        • Soodyall H.
        • Arndt S.
        • Ratshikhopha M.E.
        • Jonker E.
        • Freeman C.
        • Young L.
        • Morar B.
        • Toffie L.
        Genetic substructure in South African Bantu-speakers: evidence from autosomal DNA and Y-chromosome studies.
        Am. J. Phys. Anthropol. 2002; 119: 175-185https://doi.org/10.1002/ajpa.10097
        • Kasu M.
        • Cloete K.
        • Pitere R.
        • Tsiana K.J.
        • D’Amato M.E.
        The genetic landscape of South African males: a Y-STR perspective.
        Forensic Sci. Int. Genet. 2022; 102677https://doi.org/10.1016/j.fsigen.2022.102677
        • Sengupta D.
        • Choudhury A.
        • Fortes-Lima C.
        • Aron S.
        • Whitelaw G.
        • Bostoen K.
        • Gunnink H.
        • Chousou-Polydouri N.
        • Delius P.
        • Tollman S.
        • Gómez-Olivé F.X.
        • Norris S.
        • Mashinya F.
        • Alberts M.
        • Hazelhurst S.
        • Schlebusch C.M.
        • Ramsay M.
        Genetic substructure and complex demographic history of South African Bantu speakers.
        Nat. Commun. 2021; 12: 1-13https://doi.org/10.1038/s41467-021-22207-y